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ABSTRACT —The objective of this paper is to present a simple and effective methodology for 

modeling and simulating planar multibody systems including frictional translational joint with a 

flexible slider and clearance. By using the finite element method (FEM), the slider is divided into 

finite elements, and the distributed body forces and boundary stresses (contact forces) on the slider 

are equivalent to the nodal forces. The normal contact forces are modeled by virtual spring-dampers, 

while the frictional forces are described by the Coulomb dry friction model. By lumping the mass 

matrix and presenting it in diagonal form, the equations of motion are then inertially decoupled, and 

the frictional forces are solved independently via trial-and-error algorithm. A penalty method for the 

revolute joint connecting the slider and other bodies is applied, and equations of motion are 

integrated numerically. Finally, two numerical examples are given to test the feasibility and 

effectiveness of the methodology in this paper.  

1 Introduction 

Over the last decades, researchers have conducted a lot of studies considering multibody mechanical systems 

with imperfect joints [1-18], and reviews were made in this field [19,20]. As a branch of this area, modeling and 

simulating translational joints with clearances in multibody systems have attracted the attention of many authors. 

Wilson et al. [21], Farahanchi et al. [22], and Klepp [23] were the pioneers in studying mechanism dynamics with 

imperfect translational joints. In recent years, Qi et al. [24] presented a frictional contact analysis for multibody 

systems with spatial prismatic joints on the basis of tiny clearances. Flores et al. [25,26] proposed a methodology 

for dynamic modeling and analysis of rigid multibody systems with translational clearance joints using the 

nonsmooth dynamics approach. In their study, the resulting contact-impact problem was formulated and solved as 

a linear complementarity problem (LCP) [27-29], which was embedded in the Moreau time-stepping method. 

Flores [26] demonstrated that some numerical difficulties can arise when the clearance size is very small, which 

lead to drift problem. Acary et al. [30,31] investigated the numerical time-integration algorithms for nonsmooth 

mechanical systems subjected to unilateral contacts, impacts and Coulomb’s friction, and verified their algorithms 

by comparing with Flores’ study [26]. To overcome the drift problem, Zhuang et al. [32,33] combined Baumgarte’s 

stabilization method with horizontal linear complementarity problem (HLCP) approach for dynamic modeling 

and simulating of frictional translational joints with tiny clearances in rigid multibody systems. Using Ting’s 

rotatability laws, Ting et al. [34] presented a novel kinematic model to quantify the effects of the joint clearance 

on the output position uncertainty of any single loop linkage containing revolute or prismatic joints. All these 

above-mentioned studies about imperfect translational joints were based on rigid slider models, and the influence 

of the slider deformation was not studied. In view of this, Zhang et al. [35] analyzed the deformation of the slider 

and the clearance size using KED technique and penalty method. However, tedious judgements of the contact 
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states between the slider and its guide were introduced in their study. What’s more, the KED technique ignored 

the coupling between rigid body and flexible body motion [36].  

The purpose of this study is to present a simple and effective methodology for modeling and simulating 

frictional translational joint with a flexible slider and clearance in multibody systems. The reminder of this paper 

is organized as follows. In Section 2, the FEM discretization of the slider, normal and tangential contact forces, as 

well as penalty method for the revolute joint are introduced. In Section 3, Equations of motion of the system are 

established, and computer procedures for dynamic analysis are given. In Section 4, two demonstrative examples 

are presented, and the results are compared with previous studies. Finally, in the last section, the main conclusions 

from this study are drawn. 

2 FEM discretization of the slider and contact forces 

2.1 FEM discretization of the slider 

As shown in Fig. 1, a translational joint often consists of the guide, a slider, and a revolute joint. For simplicity, 

the guide is fixed on the ground, i.e., the slider only has translational motion. An inertial frame of reference Oxy 

is established on the ground. The slider is treated as flexible in this study. By using the FEM technique, the slider 

is divided into a finite number of elements, and the distributed body forces and boundary stresses (normal and 

tangential contact forces) on the slider are equivalent to the nodal forces. The nodes are labeled as illustrated in 

Fig. 1, and each node has two degrees of freedom. The revolute joint is considered as perfect, that is to say, there 

is no clearance and friction in the revolute joint. The revolute joint connects the slider with other bodies via the 

node 
Rn . 
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Fig. 1: The FEM discretization of the slider 

2.2 Normal contact forces 

In this paper, as shown in Fig. 2, the surfaces of the guide are modeled by appending plenty of virtual spring-

dampers in the normal directions [37]. The spring-dampers work only if the surface nodes are in contact with or 

penetrate the guide surfaces, and the normal contact forces can never be negative [38]. The normal contact force 

acting at node i is expressed as 

 
max{ ,  0},  0

0,                              0

i i i

iN

i

K
F

  



  
 


  (1) 

where iNF  is the normal contact force. i  and i  are the penetration depth and penetration velocity of node i, 

respectively. K  is the generalized stiffness parameter, while   is the hysteresis factor.  
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Fig. 2: The normal contact forces 

2.3 Tangential contact forces 

The Coulomb dry friction model has been employed by many researchers in the field of modeling and simulating 

non-smooth multibody systems [25,32,35,39,40]. This model has the superiority to simulate stiction and to capture 

stick-slip motion. It has been demonstrated that the Coulomb dry friction model requires less computational time 

and fewer selected parameters than the bristle-based friction models [5,41]. What’s more, the Coulomb friction 

coefficients can be easily obtained by experiments or by consulting handbooks on friction. Therefore, the Coulomb 

dry friction model is adopted to evaluate the tangential contact forces in this paper. 

The Coulomb dry friction model can be expressed as 

 
 

 

sgn ,  0

Sgn ,  0

iN i i

i

iN i i

F v v
F

F a v

 



 





 
 

 
  (2) 

where iF  is the tangential contact force acting at node i.   is the coefficient of kinetic friction, while   is 

that of static friction, and   is usually smaller than  . iv   is the tangential velocity (component of velocity 

in x direction) of node i, and d / di ia v t  . sgn( )x  is the sign function, while  Sgn x  is the multivalued 

function, which is defined as [42], 

  

1,          0

Sgn [ 1, 1],  0

1,          0

x

x x

x

 


   
 

  (3) 

The Coulomb dry friction model is illustrated in Fig. 3. 
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Fig. 3: The Coulomb dry friction model 
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2.4 Penalty method for the revolute joint 

There are two common techniques dealing with the perfect revolute joint. One is the famous Lagrange multipliers 

method, the other is the penalty method [43], which is equivalent to two springs acting at the pin of the joint, as 

illustrated in Fig. 4. The penalty method is easy to implement as compared to the Lagrange multipliers method, 

which introduces the differential-algebraic equations that are difficult to solve. Therefore, the penalty method is 

applied for the perfect revolute joint in this study. The forces from the revolute joint acting at the node Rn  are 

evaluated as  

 
 

 
R

R

RX RX R n

RY RY R n

F k x x

F k y y

  


 

  (4) 

where RXF  and RYF  are two forces from the revolute joint. Rx  and Ry  are the components of the position 

vector of the revolute joint, while 
Rnx  and 

Rny  are that of the node Rn . RXk  and RYk  are the penalty factors. 
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Fig. 4: Penalty method for the revolute joint 

3 Equations of motion of the system and computer procedures 

3.1 Equations of motion of the system 

As the slider only has translational motion, its equations of motion can be written as  

 
RN F     Mu Cu Ku Q Q Q Q   (5) 

where , , and M C K  are mass, damping, and stiffness matrices of the slider, respectively. ,  ,  and u u u  are the 

vectors of displacements, velocities, and accelerations of the nodes, respectively. NQ  is the equivalent nodal 

forces vector of normal contact forces, while Q  is that of tangential contact forces. 
RFQ  contains the forces 

from the revolute joint, and Q  is the equivalent nodal forces vector of other forces such as gravity and externally 

applied forces. 

The Rayleigh damping matrix is used in this paper 

   C M K   (6) 

where the parameters   and   are determined experimentally [44]. 

Other bodies of the system are treated as rigid, thus, their equations of motion are 

  , , , Rtq f q q F   (7) 

where ,  ,  and q q q  are the vectors of generalized coordinates, velocities, and accelerations of other bodies, 

respectively. 
RF  contains the forces from the revolute joint. 
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Combining Eqs.(5) and (7) yields the equations of motion of the system 

 
 , , ,

RN F

Rt


      




Mu Cu Ku Q Q Q Q

q f q q F
  (8) 

3.2 Computer procedures for dynamic analysis of the system 

In order to integrate the differential equations of motion (8) numerically, the vector Q  needs to be calculated 

first. By lumping the mass matrix M  and presenting it in diagonal form, Eq.(5) is then inertially decoupled [44]. 

Therefore, the frictional forces acting at the surface nodes can be solved independently of each other via trial-and-

error algorithm. On some occasions such lumping is physically obvious, in others this is not the case and a rational 

procedure is required. As Eq.(5) is inertially decoupled, the equations of motion of the surface node i can be 

written as  

 

2 1 2 1 2 1, 2 1, 2 1 2 1 2 1 2 1

2 2 2 , 2 , 2 2 2 2

R

R

FN

i i i j j i j j i i i i

j j

FN

i i i j j i j j i i i i

j j

m u c u k u Q Q Q Q

m u c u k u Q Q Q Q





       
      



     


 

 
  (9) 

which are the rows 2i-1 and 2i of Eq.(5) 

Thus, 

 2 1

2

0
 (for the upper surface)

N

i

N
iNi

Q

FQ


   

   
  

  (10) 

or 

 2 1

2

0
 (for the lower surface)

N

i

N
iNi

Q

FQ


   

   
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  (11) 

and 

 2 1

2
0

ii

i

FQ

Q







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   
  

  (12) 

What’s more, 2 1i iv u   and 2 1i ia u  . 

Therefore, the trial-and-error algorithm for the frictional force iF  acting at the surface node i is expressed as  

 

 

2 1, 2 1, 2 1 2 1

if ( 0)

    sgn

else

    

    if ( )    :

    if ( )  :

end if

R

i

i iN i

F

i i j j i j j i i

j j

i iN i iN

i iN i iN

v

F F v

F c u k u Q Q

F F F F

F F F F



 



 

 



 

 

   



 

   

  

    

    (13) 

In this study, when 51 10  m/siv     , the tangential velocity of node i is treated as zero [45]. After obtaining 

the vector Q , the equations of motion (8) can be integrated by a numerical method for ordinary differential 

equations. The computer procedures for multibody systems including frictional translational joint with a flexible 

slider and clearance is illustrated in Fig. 5. 
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Fig. 5: Computer procedures for multibody systems including frictional translational joint with a flexible slider and clearance 

4 Numerical examples 

In order to test the applicability and correctness of the methodology proposed by this paper, two numerical 

examples are given, and the results are compared with previous studies. The first is a stick-slip oscillator [35], 

while the second is a planar slider-crank mechanism [32]. 

4.1 A stick-slip oscillator 

The FEM discretization of a stick-slip oscillator is illustrated in Fig. 6. The slider is subjected to the applied force 

max sinF F t   and is attached to a spring of stiffness k . The uniform slider is divided into 25 four-node 

quadrilateral elements, and the parameters and initial conditions necessary to perform the dynamic analysis of the 

stick-slip oscillator are listed in Tab. 1. 

① ② ③
⑦

x
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O 31 3635
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h

k

g

s

 

Fig. 6: FEM discretization of a stick-slip oscillator 

Geometric 

characteristics 

Width of slider 0.6 ma    

Height of slider 0.5 mh    

Clearance size 2.5 mmc    

Position of applied force 0.05 ms    

Density 
21/ 3 kg/m    
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Material properties 
Young’s modulus 1000 PaE    

Poisson’s ratio 0.3    

Rayleigh parameters 0.010,  0.544     

Contact parameters 

Generalized stiffness parameter 41 10  N/mK     

Hysteresis factor 
31 10  N s/m      

Coefficient of kinetic friction 0.15    

Coefficient of static friction 0.20    

External forces 

Amplitude of applied force max 1.5 NF    

Angular frequency of applied 

force 
/10   

Spring stiffness 1.0 N/sk    

Gravitational acceleration 
29.81 m/sg    

Initial conditions Vector of displacements  u 0   

Vector of velocities u 0   

Tab. 1: Parameters and initial conditions of the stick-slip oscillator 

Fig. 7(b) shows the velocities of four corner nodes (nodes 1, 6, 31, and 36) in x direction, and it indicates that 

the slider moves with stick-slip phenomena. The results agree with Reference [35] closely. The velocities of these 

four corner nodes in y direction are illustrated in Fig. 8. It shows that the components of velocities in y direction 

are much smaller than that in x direction. Velocities of nodes 1 and 6 in y direction always have opposite signs, 

and they quickly decrease to zero when the corresponding nodes impact with the upper guide.  
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Fig. 7: Velocities in x direction: (a) Reference [35]; (b) this paper 
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Fig. 8: Velocities of the nodes in y direction: (a) nodes 1 and 6; (b) nodes 31 and 36 

Fig. 9 depicts the sum of frictional forces acting on the slider. The results of this paper are consistent with 

Reference [35] very well. As Young’s modulus, clearance size, as well as numerical methods adopted in this paper 

are different from Reference [35], the results are not identical. The frictional forces acting at the surface nodes are 

illustrated in Fig. 10. It shows that the frictional forces acting at nodes 2, 3, 4, and 5 are always zero, which means 

that these nodes are never in contact with the guide.  
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Fig. 9: Sum of frictional forces on the slider: (a) Reference [35]; (b) this paper 
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Fig. 10: Frictional forces at the nodes: (a) nodes 1, 2, and 3; (b) nodes 4, 5, and 6; (c) nodes 31, 32, and 33; (d) nodes 34, 35, and 36 

Fig. 11 illustrates the normal and tangential contact forces acting at the four corner nodes and average 

tangential velocities of these nodes v , and  1 6 31 36

1

4
v v v v v        . The solid lines in Fig. 11(a) are normal 

contact forces at the left corner nodes (nodes 1 and 31), which show that these values are subjected to the 

complementarity conditions [32]: 
 

1 31 1 310,  0,  0N N N NF F F F      

Similarly, as shown in the dashed lines, the normal contact forces at the right corner nodes (nodes 6 and 36) are 

subjected to 
 

6 36 6 360,  0,  0N N N NF F F F      

It should be highlighted that when two opposite corners of a rigid slider touch the guide with zero tangential 

velocities, a well-known statically indeterminate problem will arise. Therefore, the values of frictional forces at 

the corners cannot be calculated exactly for the rigid model in these situations. These problems can be solved by 

considering the deformation of the slider, as depicted in Fig. 11(b).  

 



10 

 

10 20 30 40
-1.0

-0.5

0.0

0.5

1.0

1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

                                                           

N
o
rm

al
 c

o
n
ta

ct
 f

o
rc

es
 a

t 
th

e 
n
o
d
es

 [
N

]

Time [s]

                                

10 20 30 40
-0.2

-0.1

0.0

0.1

0.2

0.3

10 20 30 40
-1.0

-0.5

0.0

0.5

1.0

1.5

F
ri

ct
io

n
al

 f
o
rc

es
 a

t 
th

e 
n
o
d
es

 [
N

]

Time [s]

                                                        1NF 6NF 31NF 36NF v

 [
m

/s
]

v 

1F  6F  31F  36F  v

 [
m

/s
]

v 

(a) (b)
 

Fig. 11: Normal and frictional forces at nodes 1, 6, 31, and 36 and average tangential velocities of the nodes: (a) Normal contact forces; 

(b) frictional forces 

4.2 A planar slider-crank mechanism 

A planar slider-crank mechanism including frictional translational joint with a flexible slider and clearance is 

shown in Fig. 12. In this system, the crank and the connecting rod are uniform rigid rods, and all revolute joints 

are perfect. The driving crank moment is 0 sinP P t  . The parameters and initial conditions used in the 

simulation are listed in Tab. 2.  

A

B

P=P0sinΩt
1 2 3

8 9
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-θ2
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g

Crank Connecting 
rod

Slider

Guide

 

Fig. 12: Slider-crank mechanism with a frictional translational joint 

Geometric 

characteristics 

Length of crank OA 1 1.8 mL    

Length of connecting rod AB 2 2.0 mL    

Width of slider 0.5 ma    

Height of slider 0.3 mh    

Clearance size 2.5 mmc    

Material properties 

Mass of crank OA 1 2.0 kgm    

Mass of connecting rod AB 2 1.0 kgm    

Density of slider 
220 / 3 kg/m    

Young’s modulus of slider 1000 PaE    

Poisson’s ratio of slider 0.3    

Rayleigh parameters of slider 0.010,  0.544     

Contact parameters 

Generalized stiffness parameter 41 10  N/mK     

Hysteresis factor 
31 10  N s/m      

Coefficient of kinetic friction 0.03    

Coefficient of static friction 0.04    
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Penalty factors for revolute joint B 
51 10  N/mRX RYk k     

External forces 

Amplitude of applied moment 0 6.0 NmP    

Angular frequency of applied 

moment 
/ 6   

Gravitational acceleration 
29.81 m/sg    

Initial conditions 

Displacements vector of the slider  u 0   

Velocities vector of the slider  u 0   

Generalized coordinates vector of 

other bodies 

10

0

20

0 rad

0 rad





   
    

  
q   

Generalized velocities vector of other 

bodies 
10

0

20

0 rad/s

0 rad/s





   
    

  
q   

Tab. 2: Parameters and initial conditions of the slider-crank mechanism 

First, the uniform slider is divided into 4 four-node quadrilateral elements, and the connecting rod is connected 

with the slider through the centric node (node 5). The angular position and angular velocity of the crank are 

illustrated in Fig. 13. It can be seen that the crank shows a periodic stick-slip motion. The results generated in this 

work agree with Reference [32] very well. The occurrence of stick-slip motion relates to the angular frequency of 

the applied driving crank moment [32].  
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Fig. 13: Angular position and velocity of the crank: (a) and (c) Reference [4]; (b) and (d) this paper 

Fig. 14 shows the sum of frictional forces acting on the slider. The results are consistent with Reference [32]. 

However, due to the flexibility of the slider, the maximum static frictional force yielded in this work is smaller 
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than that generated by a rigid model, as illustrated in the green circles. A more complex FEM discretization (8 

four-node quadrilateral elements) of the slider is also made, and the results are shown in Fig. 14(b). Using more 

elements, the results will be more accurate, but more computation time will be expended also. In our study, to 

simulate 200 seconds, the elapsed CPU time for the 4 elements model is about 155 seconds, while for the 8 

elements model is about 415 seconds (Intel Pentium 3.4 GHz). The 4 elements discretization of the slider can 

generate acceptable results, as depicted in Figs 13 and 14.  
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Fig. 14: Sum of frictional forces on the slider: (a) Reference [32]; (b) this paper 

Figs. 15 and 16 illustrate the normal and tangential contact forces acting at the surface nodes for the 4 elements 

model, respectively. It reveals that when the motion is stable, only lower surface of the slider is in contact with 

the guide. In Fig. 16, the frictional forces acting at the nodes of lower surface have the mutation phenomena during 

the transitions of the nodes from stick to slip.  
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Fig. 15: Normal contact forces at the nodes: (a) nodes 1, 2, and 3; (b) nodes 7, 8, and 9 
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Fig. 16: Frictional forces at the nodes: (a) nodes 1, 2, and 3; (b) nodes 7, 8, and 9 

Fig. 17 depicts the differences between position vector components: 5Rx x  and 5Ry y . As described in 

Section 2.4, Rx  and Ry  are the components of the position vector of the revolute joint B (one end of the 

connecting rod), while 5x  and 5y  are that of the node 5. It can be seen that these differences can remain 

bounded within 48 10  m  on the basis of penalty method for the revolute joint. 
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Fig. 17: Differences between position vector components: (a) 5Rx x ; (b) 5Ry y  

5 Conclusions 

This paper presented a novel methodology for modeling and simulating multibody systems including frictional 

translational joint with a flexible slider and clearance. Firstly, the slider was divided into a finite number of 

elements based on FEM, and the distributed body forces and boundary stresses (normal and tangential contact 

forces) acting on the slider were equivalent to the nodal forces. Secondly, the normal contact forces were obtained 

by using the model of virtual spring-dampers, while the frictional forces were described by the Coulomb dry 

friction model. Thirdly, by lumping the mass matrix and presenting it in diagonal form, the equations of motion 

were inertially decoupled, and the frictional forces were solved independently via trial-and-error algorithm. After 

that, the equations of motion were integrated numerically. Finally, two numerical examples were presented, and 

the results were compared with previous studies. 
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The methodology proposed in this paper can investigate the joint clearance as well as the deformation of the 

slider, and the statically indeterminate problem can be solved naturally. Different from KED method, the coupling 

between rigid body and flexible body motion can be taken into account, and the tedious judgements of contact 

modes between the slider and its guide is unnecessary. What’s more, the precision and efficiency of this study are 

acceptable. Further studies could be done on rheonomic constraint between the slider and other bodies. If the slider 

have not only translational but also rotational motions, a floating frame of reference should be established.  
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