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ABSTRACT — As the main objective of this paper, a mechanism-based expanding UGV is proposed to 

overcome large-scale obstacle. The idea is basically established on scissor mechanism principles which 

have been innovated in order to achieve long and rigid displacement. Rover platform is composed of the 

wheels, the main box and a couple of scissor mechanisms adjusting the mass center of rover respect to the 

wheels. Accordingly, it yields overall control of the contact forces which can simultaneously reduce the slip 

of the wheels and increase the performance of the obstacle climbing. As the first step, 3D kinematics is 

derived. Consequently, the stick-slip Euler-Lagrange dynamics is implemented as the dynamic model for a 

three-level controller and the torque optimization is implemented in order to simulate the rover facing 

obstacles. Finally, a fixed-geometry rover and the extendable rover are compared with each other to show 

the enhancement of the climbing ability by using the scissor-based concept. Furthermore, normal contact 

forces of the wheels are controlled to reduce the slip which consequently, increases the traction force. 

1 Introduction 
Today, the space missions and rescue applications obviously required Unmanned Ground Vehicles 

(UGV)s [1]. Emulation during cold war leaded to the first real application of the UGVs. Consequently, the 

rover Sojourner [2] was deployed for the Mars Pathfinder lander in July-September 1997. UGVs or 

autonomous rovers [3, 4] have usually been implemented on the distorted terrains whose coherent and 

complete survey subject to the surface and environment interaction can be investigated in [5]. Such terrains 

include hills, holes, and obstacles which may cause horrible fail and halting in the missions of rovers. The 

four most important issues while interacting unknown terrains are sinkage in the soil [6-9], overturning, 

failing in obstacle climbing up and continuous slip [10, 11]. Accordingly, unsuccessful climbing up the 

obstacles is the main issue of the locomotion on the rigid and rough surfaces. While interacting large 

obstacles, the slip is the most important issue which can cause a broad range of climbing fails [12, 13]. On 

the other hand, overturning issue can be significantly solved by implementing the stability margins such as 

ZMP [14]. Regarding each locomotion issue, the contact detection and slip reduction algorithms can be 

significantly useful in estimating the UGV contact dynamics at each moment and calculating the appropriate 

actuator torques for reducing the slip [15, 16]. The influence of these algorithms has been investigated for 

UGVs subject to slip [17]. Furthermore, other methods consider the slip ratio as the base of slip control 

using high-resolution sensors [18, 19]. Artificial intelligence such as deep learning have been successfully 

tested to reduce the slip and halting [20]. Notwithstanding the majority of the control-based efforts in this 

context are conducted to reduce the danger of rover slip when facing medium obstacles, they have not been 

exploited frequently for large obstacles such as big rocks and walls. 

Mechanical reconstruction of UGVs can be advantageous to enhance the climbing performance in 

passing over large obstacles. The first UGV prototype has been proposed by Walter in 1948 [21] which has 

inspired other following UGVs such as Tinius in 1950 [5]. Consequently, another diverse designs of UGVs 

such as Creep Mk-2 in 1962 [22], SAFIR [23], Sojourner [24] and big-wheel-inflatable rovers [25] have 

been utilized to reduce the danger of slip, halting and increase total traction force. Furthermore, ATHLETE 

was fabricated to move over large scale obstacles by means of six legs equipped with independent wheels 

[26]. Despite all ATHLETE adequate abilities, its platform includes expensive limbs and various degrees of 

freedom besides high power consumption. Accordingly, as a simpler but more efficient designs, high-
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mobility UGV, Go-For with wheels-on-legs [27], other fixed-geometry designs [28] and Rhex [29] have 

been fabricated to eliminate a range of issues. These robots are able to pass some obstacles due to additional 

legs and limbs. The disadvantages of these platforms are the number of degree of freedom and control issue 

of the legs.  

The proposed extendable UGV in this paper is compounded with a contact-force control algorithm in 

order to enhance the ability of obstacle climbing and to reduce the danger of slip. The base of the new 

platform has been found on the scissor mechanism principles. Analogously, in the case of mobile robots, the 

concept of scissor manipulator is already implemented to handle the camera of the mobile manipulator. As a 

contribution of the current paper issue, a couple of scissor mechanisms are embedded in the platform which 

obviously empowers the platform to adjust the distance between the rear wheel, the front wheels, and the 

main body of the rover. Simultaneously, the controller estimates the normal vector of the surface at the 

contact point of each wheel using 3D spatial resisting shield sensor [30, 31] and then adjusts scissor length 

in order to change the contact forces during climbing up. An additional slip reduction algorithm is 

implemented to eliminate the slip of the wheels during scissor extension by adjusting the torque of the 

wheels. As it was pointed out previously, the main innovative idea of this paper is to reduce the slip in the 

presence of large-scale obstacles and distorted surfaces, and enhance the climbing efficiency of the rovers 

using scissor mechanism.  

As the first section, the paper proposes the main idea of the new platform. The second section considers 

the kinematics of the three wheeled extendable rover. Consequently, 3D stick-slip dynamics of the rover 

facing large obstacles is extracted. A three-level controller including locomotion control, scissor length 

control and slip reduction algorithm is used to virtually control the new platform. Finally, the performance 

of the new rover empowered by the slip reduction algorithm is compared with other fixed-geometry 

platforms facing obstacles.         

2 Concept description 

Figure 1-(1, 2, 3) shows the overall form of the new rover. The two scissor mechanisms in Fig. 1-(4), 

which are constrained by the yellow slot part in Figs. 1-(4,5,6), are the core of the new idea. The variables 

fx and rx (see Figs. 2 and 3) determine the location of the CG  with respect to the coordinate system 

r r rX Y Z  for proper distribution of the body weight on the front and rear axles of the robot. It means that the 

normal forces and consequently, the tractive friction forces of the wheels can be controlled. 

 

Fig. 1:  1: The new rover, 2: transparent view of the rover, 3: extended rover, 4: slot of scissors, 5: middle slot, 6: side slot   

3 Kinematics 

The main coordinate systems of the rover model are illustrated in Fig. 2 containing the inertial reference 

frame XY Z , the coordinate system 
b b b

CG CG CGX Y Z of the CG, and the frames ( , , )wb wb wb

i i iX Y Z i r fr fl at the 
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connection points of the main body and the wheels.  Figure 3 represents the geometric dimensions of the 

rover. For the sake of brevity, all the vectors containing position coordinates and their associated points are 

respectively written in bold and italic font styles.   

 

Fig. 2: Coordinate systems of the rover model. 

The main body-wheel connection points, the wheel-surface contact points, and the CG point are respectively denoted by

( , , )wb

iP i r fr fl ,
c

iP , and 
T

b b

CG b b b CGx y z H   P . The parameters 
bL  and 

bW  are the length and the width of 

the body, respectively. The global orientation of the body is defined using the rotation matrix 
bR  representing a rotation of 

x

about the absolute X axis, followed by a rotation of y about the absolute Y axis, followed by a rotation of 
L

z about the current 

b

CGZ axis which can be defined by , , ,
= L

y x z
b
CG

b Y X Z  
R R R R .     

 

Fig. 3: Dimensions of the platform.   

Accordingly, the position coordinates of the main body-wheel connection points can be written as Eq. 

(1). Figure 4 clearly illustrates the geometric and kinematic parameters of the ith wheel.  
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Fig. 2. Coordinate systems of the rover model.  

 
Fig. 3. Dimensions of the platform.   

The position of the main body-wheel connection points, the wheel-surface contact points, and the CG is 

respectively denoted by coordinates ( , , )wb

iP i r fr fl , c

iP , and 
T

b b

CG b b b CGP x y z H    . The 
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The parameter 2 w

iL denotes the wheel thickness. The point 
cw

iP denotes the ith wheel center whose 

coordinates are derived according to Eq. (2).   

  (2)                                   = , =- + , = +cw wb cw w wb cw w wb

r r fr fr b y fr fl fl b y flL LP P P R e P P R e P   

where 3 3[ ]x y z e e e I . To find the absolute coordinates of a point 
w

iP on the wheel, its local coordinates 

with respect to 
cw cw cw

i i iX Y Z have to be derived. As Fig. 4 points out, the plane ellipseP crossing the wheel and 

passing through its axes results in two ellipses. The diameters of the major and minor axes of each ellipse 

are denoted as 2 w

iL and
o

sd , respectively. Firstly, the body plane bodyP is defined by axes 
w

iX and
w

iZ .  The 

encoder output and the distance between the major axis of the ellipse and the wheel axis are respectively 

defined by
n

i  and ir


. Consequently, the body plane bodyP and the angle 
n

i define the plane encoderP and 

analogously, encoderP and the angle 
n

i define the plane ellipseP . Accordingly, the total angle between the planes 

bodyP  and ellipseP is equal to
n

i . Independent angle 
n

i  is considered in order to define the parametric 

equation of the ellipse in its coordinate system ( , , )e e e

i i iX Y Z i r fr fl . The rotation matrix defining the 

orientation of the wheel coordinate system ( , , )w w w

i i iX Y Z i r fr fl  relative to the coordinate system 

b b b

CG CG CGX Y Z of the CG is given by
, -0.5

= wb
i

w X

b


R R . Consequently, the contact angles 

n

i  is substituted into 

the rotation matrix
, ,

= =n n n
i i i

w w
i iZ Z

w

ei   
R R R  to define the orientation of the coordinate system 

( , , )e e e

i i iX Y Z i r fr fl   relative to the ( , , )w w w

i i iX Y Z i r fr fl . The coordinates of a typical ellipse point in 

( , , )e e e

i i iX Y Z i r fr fl  are then given by = c + s0.5 n n
i i

e

i x

o

z

w

s id L
 

P e e wherein (.)c and (.)s denote cos(.) and

sin(.)  respectively. Finally, the coordinates of the point 
w

iP can be given by

 + +w b w e cw

i b w ei i i x ir  
 

P R R R P e P .  

 

Fig. 4: Kinematic parameters of the ith wheel.  
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The independent kinematic parameters include the angles
x ,

Y ,
Z , 

c

i , 
c

i  and the coordinates of the 

point Pb

CG . Some of these parameters are determined. The first two coordinates of the point
b

CGP , denoted by 

x b

CGP and
y b

CGP , specify the desired path in the XY plane of the coordinate system XY Z . The angle
Z will 

be derived in Section 5. The remainder parameters collected in the vector 
T

= z b c c c c c c

x y CG r r fr fr fl flP         U have to be modified to satisfy the kinematic constraints. 

Figure 4 shows the coordinates of the contact point
c

iP on the ith wheel and the coordinates 
s

iP of the vertical 

projection of the point 
c

iP  onto the surface ( , )x yS . The tangent vectors on the wheel at 
c

iP and the normal 

vector of the surface at the contact point of the ith wheel are respectively given by 

,= =c c

i ii i

     T T and
( , ) ( , )=- - +s

i x y x x y y zS x S y   N e e e , wherein  +b w e

b w ei i i xr   R R R P e . 

The first set of the kinematic constraints is the tangency condition in which the vector
s

iN has to be 

perpendicular to the both vectors i


T and i


T when the ith wheel lies on the surface at the point

c

iP . These 

constraints are = .t s

i i iC  
N T and = .t s

i i iC  
N T .  Moreover, the distance constraint defines the distance between 

c

iP and
s

iP . The first and the second components of 
c

iP  are equal to the first and the second components of

s

iP . Accordingly, the distance between the points Ps

i  and
c

iP  is equal to the difference between the third 

component of them. The wheel and the surface touch each other by implementing the iterative Newton-

Raphson algorithm which reduces the distance between the points
s

iP  and 
c

iP  by imposing the distance 

constraints T

( , )
= - x c y c

i i

D c

i x i P P
C Se P . Simultaneously, it keeps the wheel tangent to the surface according to the 

tangency constraints. Finally, these constraints are collected in the vector
T

t t t t t t D D D

r fr fl r fr fl r fr flC C C C C C C C C        C to include all the required kinematic constraints. 

Implementing the Newton-Raphson algorithm, the coordinates 
c

iP  approach to the coordinates 
s

iP and 

finally, these points touch each other.  

4 Stick-Slip Dynamics 

In this section, the Lagrange method is implemented to derive the 3D slip-stick dynamics. The 

independent dynamic parameters are the position and orientation of the CG collected in the vector 
T

t L

b b b b x y zx y z      P and the relative orientations of the wheels which are the encoder data 

expressed by
e e e

fl fr r     . Indeed, the Newton-Raphson algorithm iteratively updates the parameters 

T

= z b c c c c c c

x y CG r r fr fr fl flP         U while the generalized coordinates of the dynamic 

formulation include
T

L e e e

d b b b x y z fl fr rx y z         v . As the first step, the Jacobian 

matrices of the linear velocities of the wheels center and the CG can be respectively calculated from  

 (3)                        , ( ),v cw cw v b

i i d CG CG dj jij i ij i
i = fl, fr, r                   J P v J P v 

The absolute angular velocity 
T

b b b

x y z   
  of the main body in terms of 

dv  can be represented by

, ,y x

L

x x y y Y X z z    e e R R e . Accordingly, the absolute angular velocity of the wheels 
T

i i i

x y z   
  can 

be calculated by
T

b b b b n

x y z b w z i       R R e . Subsequently, the angular velocity Jacobians can be obtained  

as 



6 

 

(4)                        

3 3 3 2
3 9

3 3 3 1 3 1
3 9

3

, ,
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3

,

, ,

9
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





 

 

 







 


  


 


 


 
 

 
 

 
 

 
 
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e e R R

J O O

J O O O

J O O

J O O

e R R e

e e R R e R R e

e e R R e

 

The augmented total Jacobian matrix of the wheels and body can now be defined by 
T

T T

6 9

cw v cw cw

i i i





          
J J J and

T
T T

6 9

v

CG CG CG




   J J J , respectively. The mass matrix and the 

Christoffel index can be written as  

5)(                  

                 

T
T T T

5 5

( , , )

5 5

k
1 1

= [ ]

1
=

2

v v v cw v cw cw cw

CG i CG CG i CG i i i i i i

i fl fr r

chr d d d d dkj i ki j ij k i j
i j

m I m I   





 

     

       





D J J J J J J J J

C D v D v D v v v

 

The effect of the gravity can be obtained in the following manner 

 (6)                                          
T

( , , )

= ( )b cw

z CG i i d

i b wf wr

g m v


 
   
 

G e P P 

The Jacobean matrix of the contact point 
v c

i ij
  J  is equal to  c

i d j
   P v . The rotation matrix defining 

the orientation of the contact point coordinate system 
pc pc pc

i i iX Y Z  relative to the coordinate system XY Z is 

given by pc i i

s

i

    NR T T . Representation of the global contact force 
iF of the wheel i in the frame

pc pc pc

i i iX Y Z  leads to the local contact force T= p

c

i icF R F  whose components are aligned with the directions of 

i


T , i


T , and 

s

iN vectors. Accordingly, the generalized local contact force can be written as

T T
cp v c v c c

i i i i ipc
       F J F FRJ . The dynamic equations of motion can be described as  

)(7                                  
T

cp v c c

d chr i d chr i i

i i

pc
          D v C G F D v C G J F QR 

which can be rearranged in the following form as 

(8)        

 

 
T T T TT T T T

18 1 9 18

9 1
= , - +

,

D chr

cp cp cp v c v c v c

d fl fr r D f pl fc pr c r pc

 

 


   

                   

χ Θ χ χ Q C G

Θ v F F R R RF χ D J J J
   

The vector Q  represents the external forces and torques. These equations have to be solved in order to 

obtain the contact forces and the generalized accelerations in terms of the generalized coordinates. Some 

additional acceleration equations are to be included in the dynamic equations (8) to achieve equal number of 

equations and unknowns. The representation of the absolute contact point velocity
c

iP in the coordinate 

system
pc pc pc

i i iX Y Z leads to T

pc

pc c

i i RP P . This velocity can be represented in terms of the generalized 

coordinates as T

pc

pc v c

i i dP R J v . To impose the stick condition for wheel i, 
pc

iP has to be set to zero. 

Consequently, differentiating T

dpc

v c

iR J v  with respect to time yields the required acceleration equations

    T Tv c v c

i dc cd ip p t  R J v R J v , which upon rearrangement, can be written as  
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9)(                          T T

3 9
3 18 3 1

, ,p p p v c v c

i i i i ipc pc i dt 


 

      
   

χ Θ χ χ R J O χ R J v    

By appending Eq. (9) for three wheels to Eq. (8), the system of dynamic equations can now be solved for 

all unknowns under the stick assumption. The stick assumption may only be violated when the resultant 

friction force exceeds the maximum allowable static friction according to    
2 2

T T Tcp cp cp

s z i x i y i  e F e F e F . 

This condition means when the contact force vector lies outside the friction cone, the slip occurs. In this 

case, the unknown contact forces of the wheels along the slip directions in Eq. (8) have to be replaced by the 

corresponding kinetic friction forces. This, in turn, leads to the reduction of unknown parameters. The 

kinetic friction force vector in the global and local frames can be defined respectively by
T cp c c

k z i i i e F P P

and
T T

pc

cp c c

k z i i i Re F P P . The simulation algorithm checks all possible stick-slip condition to find a 

consistent solution.  

5 Geometric control of scissors length 
The geometry of control system is illustrated in Fig. 6. The control process has three main levels 

including the scissors control to adjust the values of scissors length 
fx and

rx , the kinematic control to 

approach the desired point
xyz

dP , and the torque optimization to reduce the slips by implementing dynamic 

estimation. At the beginning of each simulation step, the controller finds the appropriate scissors length 

according to the third component of the normal vector at contact points. Consequently, using the new 

scissors length, the kinematic controller produces the desired velocities of the main body in order to reduce 

the position error. Finally, implementing the produced velocities from the previous control level, the 

dynamics estimator unit finds a set of torques for the wheel motors which prevents slip. Due to the influence 

of the normal vector at the contact point of the wheel i (
s

iN ) on the tractive friction force, its magnitude and 

direction can be assumed as an appropriate measure to find
ix .  

 

Fig. 5: Geometry of the control system. 

Accordingly, the pivot angles 
f and 

r  in scissors can be changed to achieve the desired 
fx and

rx . 

The gravity force influences both the friction and normal contact forces of the wheels moving on the ramps. 

Obviously, by increasing the angle of the ramp, the friction becomes dominant and the effect of normal 

contact forces reduces. Assuming the adjustable center of mass, the values of the normal and friction forces 

can be controlled. As an example, when the front wheels are located on a ramp and the rear wheel is moving 

on a flat surface, the scissors length can be adjusted in such a way that the center of mass is approached the 

rear wheel. This helps the platform to increase the rear normal contact force, and consequently, the possible 

 

 

Fig. 6. Geometry of the control system. 
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tractive friction force of the rear wheel in the stick zone is increased as well. Hence, the concept of this idea 

can be formulized to relate the desired scissors length to the normal contact forces whereby the influence of 

the traction force of the wheel on the flat surface is increased. Equation (10) proposes this idea as follows 

10)(                                    T T0.5 0,s s s

z fl fr fd z r rd fd rd tx x x x L    e N N e N              

where the constant 
tL  is a user-defined value equal to the maximum length of one scissor. The current 

values of 
fx and

rx have to approach the desired values 
fdx and

rdx by a PID controller. As the second level 

of the control process, the spatial kinematics of the robot is controlled by a PID controller in order to find 

desired angular velocity of the wheels' motor according to the distance between the points 
p

CGP and
xyz

dP . 

According to Fig. 6, the robot can only move along the vector
b

CGV  as its platform is assumed to be 

nonholonomic. The robot can also rotate about
b

CGZ axis. Two control vectors are the velocity vector 
b

CGV and 

the angular velocity vector
b

CGω of the main body. The coordinates of the desired and the estimated points are 

respectively given by
xyz

dP and
e b

CGP . The first and the second coordinates of the point 
xyz

dP  specify a planar 

point 
xy

dP  whose coordinates are defined by
xy

dP . The third coordinate of the point 
xyz

dP is equal to

   ( 1 0 , 0 1 )
xy xy
d dx y

S
 P P

. The projection point of the point 
e b

CGP onto the plane s

pS  defined by three estimated 

contact points ( , , )e c

iP i r fr fl is denoted by
p

CGP . The vector 
c

dV  is generated by projecting the vector 

-xyz p

d CGP P  onto the surface at the point
p

CGP .  Projection of 
c

dV  onto the robot plane defined by three points

cw

rP ,
cw

frP  and
cw

flP  is denoted by
p

dV . The angular velocity 
b

CGω required for aligning the robot with the 

vector
p

dV is derived by  
-1

× ×=b b p b p

CG CG d CG d Kω V V V V . The parameter K is the controller coefficient to 

define the magnitude of the required rotational velocity. The angle 
Z  can be updated by the equation

0

=b b b

CG CG C

t

Z

t

Gdt


ω ω ω . The required velocity vector of 
b

CGV is calculated as
T= -e

b x

b p XY Z

CG CG d vKV P PR e . 

The parameter 
vK  is the control coefficient of 

b

CGV . The vectors 
b

CGV and 
b

CGω have to be used to find the 

desired encoder velocity 
d

i  (see Fig. 6).  The total angular velocity of the ith wheel can be seen in the 

following equation  

11)(                   
T T

-20 + + 0 0 = - × || - ||b b
CG CG

b b b w d c cw cw c cw

b w oi i i i i i i

b

CGX Y
       

R R R P P P Pω P 

The desired angular velocity of the wheels' motors as the final output of the controller is given by  

12)(               
TT

T T 2= - × || - || - 0 +b b
CG CG

d w b c cw cw c cw b b

i z oi w b i i i i CGYi

b

X
                  

e R R R P P P P P ω 

6 Optimization of the motor torques of the wheels 
Finding the required torques of the motors is the final level of the control process. As the first step, the 

angular velocity extracted from the kinematic control level restricts the acceptable range of the torque for 

each wheel. The second step is to optimize the torques in these ranges whereby the rover moves without 

longitudinal slip. In order to accurately solve the dynamic equations, the contact sensor data including the 

angles 
i and  

i  is required [31]. For the slip elimination, the motor torques can be obtained and applied 

during the real time dynamic analysis. For this purpose, a direct search method illustrated in Fig. 7 is 

implemented to find the optimal torques. The proportional and derivative coefficients respectively denoted 

by 
ai cK K and 

ai cK D are implemented in a PD controller whereby the current velocity 
n

i of the motors 

approaches to
d

i . These coefficients are both the result of multiplication of a scale constant ajK and two 
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different fraction constants 
cK and

cD . Choosing two different values of ajK results in two different torques 

which both of them reduce the control error -d n

i i  . Accordingly, an allowable output torque range can be 

extracted by choosing 
1aK and 

2aK  as the following equation represents 

  13)(                   
         1 1 2 2

1 2 1 2

,

min( , ) max

- - - -

( , )

d n d n d n d n

i i i i i ii a c c i a c c

i

i

i i i

i

i

K K D K K D 

 

     

 





    


 

 

The optimization process reducing the slip is illustrated in Fig. 7.  The optimization is conducted to find a 

set of 
i  according to a blind search in the range of 

1 2min( , )i i  and
1 2max( , )i i  . The cost function 

     
1 2 2

T T Tcp cp cp

s z i x i y iS 


 e F e F e F used in the algorithm defines the danger of slip and is presented as a 

fraction of the maximum allowable static friction and the real friction forces.      

 

Fig. 6: Optimization flowchart 

7 Simulations 

The parameters of the UGV utilized for simulation can be numerically defined as 0.7,bW  1w

iL  ,

0.15,ir
  0.3o

sd  , 0.1w

rx  , 0w

fx  , , , and 2tL  , where all dimensions are in meter. 

The masses of the wheel and the main body are equal to 1 (Kg) and 15 (Kg), respectively. The simulation 

section includes three case studies. In the first case, climbing simulation is conducted to compare an ordinary 

rover with the proposed extendable platform. Furthermore and the second case shows how the rover 

overcomes non-symmetric large obstacles when the body rotates about
b

CGX  which yields different normal 

contact forces of the front wheels. 

7.1 Case study 1: comparison between the rovers during large obstacle climbing 

In this case, we first compare the ability of an ordinary rover (Rov1) with the proposed extendable rover 

(Rov2) during 10 seconds when facing a large obstacle whose surface is defined as

0.2CG

wH  0.3sW 
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   11.6 2atan 5 -4z x   . As it can be distinguished from Fig. 7, the ability of the new extendable 

rover in climbing is significantly improved. The climbing stages of the new rover are shown in Fig. 8. Figure 

9-a shows variation of the scissors length. Accordingly, Fig. 9-b shows how the proposed rover successfully 

adjusts the normal contact forces which yields climbing over obstacle as shown in Figs. 7 and 8. 

 

Fig. 7: Obstacle climbing comparison 

 

Fig. 8: Sequences of the obstacle climbing 

 

Fig. 9: (a)Variation of the scissors length, (b) Variation of normal contact force 

7.2 Case study 2: climbing over a non-symmetric and multi-level obstacle 

Symmetric obstacles, which eliminate roll orientation, cause equal contact forces of the front wheels, 

which is of course unrealistic. This case study investigates the ability of the new extendable rover in 

climbing over a non-symmetric and multi-level obstacle defined as
1 2=z z z where

a 

b 
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 1= atan(15y)+0.5 )/ 0.7z    and
2 =0.8atan(15y)+0.5 )/z   . Figure 10 shows how the proposed rover 

successfully climbs the obstacle. According to Fig. 11, it is noticeable that the normal contact forces of the 

front wheels after t=7(s) are different due to the rotation about
b

CGX . 

 

Fig. 10: Climbing over a non-symmetric and multi-level obstacle 

  
                                                  (a)                                                                     (b) 

Fig. 11: Normal contact force. (a): normal contact forces, (b): scissors length 

Variation of the scissors length during the obstacle climbing is shown in Fig. 11-b which yields proper 

normal contact forces and successful climbing.   

8 Conclusion 

This paper proposed a new extendable UGV to challenge the obstacle and cliff. The mass center of the 

main body was adjusted by implementing a couple of scissor mechanisms which accordingly yielded the 

normal contact force control and consequently, increased the range of acceptable static friction force. The 

kinematics and slip-stick Euler-Lagrange dynamics of the rover were formulated when facing the distorted 

surfaces. The friction cone determine the slip moments. Furthermore, a control process containing scissors 

length control, geometric position control, and slip reduction algorithm reduced the slip and simultaneously 

increased the possible tractive force due to the adjustable normal contact forces. This increase in the traction 

force empowered the extendable rover to overcome large obstacles as compared with the ordinary rovers. On 

the other hand, the role orientation effect was investigated while climbing over a non-symmetric and multi-

level obstacle whose locomotion results showed the successful climbing in the presence of role orientation. 

The scissors length control process in Section 5 only supported climbing over large obstacles whose height 

is less than the maximum scissor length. To overcome cliffs and environmental walls, an event-based 

climbing process was designed which significantly yielded successful climbing over cliffs. Synoptically, 

according to the climbing results, the new scissor-based platform is efficiently empowered to pass various 

types of the obstacles which could be impossible for the ordinary rovers.            
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