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Configuration spaces with Lie group structure address the inherent nonlinearity of multibody system models
with large rotations. Brüls and Cardona [1] have shown how to avoid time-consuming re-parametrizations of the
Lie group in generalized-α time integration. After a short transient phase, the Lie group generalized-α method
achieves global second-order accuracy for unconstrained as well as for constrained systems [2]. It may be im-
plemented efficiently following a Lie algebra approach [1, 3] that substitutes traditional updates of configuration
variables in the (nonlinear) Lie group by updates of solution increments in a linear space.

In the present paper, we discuss the extension of this approach to multi-step methods of BDF type which are the
methods-of-choice in most industrial multibody system simulation packages [4]. BLieDF2nd is a k-step Lie group
integrator for second order systems that avoids order reduction by a slightly perturbed argument of the exponential
map for representing the nonlinearity of the numerical flow in the configuration space. For constrained systems,
BLieDF2nd is combined with the index-3 formulation of the equations of motion [4]. We prove convergence with
order p = k in all solution components for BLieDF2nd with 2≤ k ≤ 4 and illustrate the theoretical investigations
by numerical tests for unconstrained and constrained versions of the heavy top benchmark.

BDF and the update of solution increments BDF are k-step methods that are zero-stable for k ≤ 6 and achieve
global order of accuracy p = k. For ODEs ẋ = f(t,x), the numerical solution xn+1 at t = tn+1 = tn +h is defined
implicitly by the corrector equations

1
h

k

∑
i=0

αi xn+1−i = f(tn+1,xn+1) (1)

with h denoting the (fixed) time step size and algorithmic parameters α0, α1, . . . , αk satisfying ∑i αi = 0. In this
classical form (1), the multi-step method can not be applied to the Lie group setting since there are no linear
combinations ∑i αixn+1−i in a nonlinear configuration space. Therefore, we transform (1) to an equivalent formula
in terms of solution increments resulting in the one-step update

xn+1 = xn +h∆xn (2a)

with a vector ∆xn that is defined implicitly by the new corrector equations

k

∑
i=1

γi ∆xn+1−i = f(tn+1,xn+1) with γ1 := α0 and γi :=
i−1

∑
j=0

α j , ∆xn+1−i :=
xn+2−i−xn+1−i

h
, ( i = 2, . . . ,k ) . (2b)

BLieDF2nd We consider constrained systems being described by a 2nd order DAE on a Lie group G:

q̇ = DLq(e) · ṽ , (3a)

M(q)v̇ =−g(q,v, t)−B>(q)λ , (3b)

Φ(q) = 0 (3c)

with configuration variables q ∈ G, velocity coordinate v ∈ Rk, Lagrange multipliers λ, mass matrix M, force
vector g, holonomic constraints (3c), constraint gradients B(q), the tilde operator (̃•) : Rk→ g with Lie algebra g
and directional derivative of the left translation DLq(e) : g→ TqG, ṽ 7→ DLq(e) · ṽ in e along ṽ, see [1].



Following the Lie algebra approach [3], the kinematic equations (3a) are discretized by a (nonlinear) Lie group
version of (2a) with solution increments ∆qn ∈ g in a linear space. Instead of time-consuming re-parametrizations
of the configuration space, we just use exponential map exp : g→ G and Lie group operation ◦ : G×G→ G:

qn+1 = qn ◦ exp(h ∆̃qn) , (4a)
k

∑
i=1

γi ∆qn+1−i = vn+1 +h2Lk(vn,vn−1, . . . ,vn−k;h) , (4b)

1
h

M(qn+1)
k

∑
i=0

αi vn+1−i =−g(tn+1,qn+1,vn+1)−B>(qn+1)λ n+1 , (4c)

Φ(qn+1) = 0 (4d)

(details of initialization [4] are omitted because of space limitations). Note the correction term h2Lk in the in-
crement update (4b) that was introduced to avoid order reduction. Without this correction term, the order of
convergence may drop to p = min{k,2} as can be seen by the numerical test results in the upper left plot of Fig. 1
(“brute force approach”). Guided by the convergence analysis, we define

L2 ≡ 0 and L3 = L3(vn,vn−1,vn−2;h) :=
1
12

v̂nv̇n with v̇n :=
3vn−4vn−1 +vn−2

2h
(5)

with the hat operator representing a matrix commutator in the sense of ˜̂vnv̇n = [ṽn,˜̇vn]. The formal proof of global
accuracy of order p = k for BLieDF2nd with k ≤ 3 is nicely illustrated by the numerical test results for uncon-
strained and constrained versions of the heavy top benchmark [1], see Fig. 1.
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Fig. 1: BLieDF2nd for the heavy top benchmark [1]. Upper plots: unconstrained formulation with Lk ≡ 0 (left plot, “brute force approach”)
and with Lk according to (5) (right plot). Lower plots: constrained formulation (left plot: error in q, right plot: error in λ).
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