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Contact problems can be found in many mechanical systems [1]. In the modeling of mechanical systems, 

contacts problems may need the proper treatment due to their non-smooth nature. Some approaches have been 

used to deal with contact problems. And the complementarity method [2] is a quite popular one. 

Applying the complementarity method, the imposed constraints of the contact problems are usually 

decomposed into complementarity conditions. Such complementarity conditions are incorporated into equations 

of motion, which are formulated as complementarity problems (CPs) [3]. In planner contact problems under 

Coulomb’s friction law and spatial contact problems under polyhedron friction law, the governing equations can 

be formulated as linear complementarity problems (LCPs). Meanwhile, for spatial contact problems under cone 

friction law, the governing equations can be formulated as cone complementarity problems (CCPs), which 

belong to nonlinear complementarity problems (NCPs). The complementarity method has been studieded for 

several years. Whereas, models of the complementarity method  may not be “perfect” enough. Some non-

perfectence of the previous complementarity models is shown in the follwing example.  

 

Fig. 1: A single pendulum subject to unilateral kinematic constraint 

Let us consider a planner single pendulum subject to unilateral kinetic constraint at one end, as shown in 

Fig.1. The pendulum is uniform with total mass m  and total length 2l. At the contact point U , the initial values 

of normal distance,  normal velocity  and tangential velocity  are all zero. Two external forces Fx and Fy are 

exerted at the center of mass C.  

Applying Newton’s motion law and Coulomb’s friction law, equations of motion can be written as: 
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It can be verified that Eq.(2) is equivalent to a complementarity condition: 

 0, 0, 0U U U U

N N N Ng F F g     (4) 



As for Eq.(3), the terms 
u

TiF  and 
u

Tig  are decomposed as: 
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Then, two complementarity conditions are derived from Eq.(3) and Eq.(5): 
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In the previuos complementarity models, the complementarity conditions Eq.(4) and Eq.(6) are added 

into Eq.(1) and they can be transformed as a LCP: 
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In Eq.(7), since the terms U

Tg   and U

Tg   are defined as    2; 2U U U U U U

T T T Ti T Tg g g g g g     , the 

condition 0U U

T Tig g    should be obeyed all the time. However, 0U U

T Tig g   has not been added in Eq.(7). The 

missing of 0U U

T Tig g    may lead that Eq.(7) has some “unnecessary” solutions. 

 Let us set the initial conditions as / 4, 0, 1, 0, 0, 0, 0u

x yx y F F          . Then we may find that 

Eq.(1)-Eq.(3) has a unique solution: 0, 0, 0, /U U U U

N T T N yF F g g F m    . While for Eq.(7), it can be verified 

that there is a set of solutions  
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/ ; 0 0 0 0yF m        ，x y  which contain an infinite number of 

“unnecessary” solutions with any 0  . The “unnecessary” solutions may cause waste of computation as well 

as other numerical problems. If we add 0U U

T Tig g    into Eq.(7), the new LCP would have an unique solution:

 
T T

/ 0 0 ; 0 0 0yF m   x y  which is in one-to-one correspondence to the unique solution of Eq.(1)-Eq.(3). 

Such phenomenon implies that 0U U

T Tig g    is indeed a necessary condition which should be added into the 

complementarity model. The above discusssion is about a single contact problem. In fact, such discussion can be 

expanded into multiple contact problems with both unilateral and bilateral kinetic constraints. And the 

conclusions are similar.  

In this paper, an enhanced LCP model of planner multiple contact problems which adds the missed 

conditions is proposed. The proposed model is proved to be completely equivalent to the concerned contact 

problems (without any “unnecessary” solutions which appear in the above example). Besides, complementarity 

theory is applied to investigate properties of solutions of the proposed model. Existence of solutions and 

boundedness of solutions are proven, so the presented model are always solvable. Sufficient conditions of 

uniqueness and finiteness of number of solutions are provided. These conditions are applied in parametric study. 

Finally, several numerical examples are given to show non-uniqueness or infiniteness of number of solutions, 

which may be related to some non-smooth phenomena [4].  
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