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In the field of race car engineering the performance of a m@chhsystem is typically measured by the
duration of a driving maneuver, which is closely relateditoet optimal control. An approach often used for
solving optimal control problems is based on an adjoint igretdcomputation of the cost function which has to be
minimized. Using the gradient information, a (local) minim can be found by applying appropriate optimization
techniques, such as line search algorithms. This appraaskhle advantage that it is more robust than solving the
underlying two point boundary value problem and, henceliegige also to complex multibody systems described
by differential algebraic equations. In this contributitie approach for fixed final time presented.in [1] is extended
by terms needed to solve problems with variable final timeillGistrate the problem description and the proposed
solution strategy for this case, we consider the dynamicsbm of a simplified vehicle model having the form

x =f(x,u), X(to) = Xo, @

wherex(t) denotes the vector of state variables afid the vector of control inputs. The extension to differential
algebraic systems is straightforward and shownlin [1].
The final timet; of a simulation run is reached, when the states satisfy arsegliation of the form

®(x1) =0, where x;=X(t1). (2)

Recalling the racing car example, this condition may désctie crossing of the race track’s finish line. Note,
that this is only one form of a time optimal control problem.dther problems, the final state may be either fully
prescribed (such as in robotics) or even completely free .

Now, the goal is to find control inputs(t) restricted by O< u;(t) < u; which minimize the cost function

3= [*2+pi0)

wherep(X) is a penalty function in order to introduce some state caimgs. Withoutp(x), the cost function is
simply the length of the time intervéd — to.

From Pontryagin’s minimum principleé [2] follows, that — iha non-singular case — the optimal control for
bounded inputs, which appear linear in the Hamiltonian, ismag-bang control, where only the switching points
are unknown. In the vehicle dynamics example, this may bec#ise for the accelerator and the brake input.
However, also some control inputs can appear, which arefribedang-bang type (like the steering in the vehicle
example).

In order to apply a solution strategy for our time optimal ttohproblem similar to the method proposed in
[1], we try to compute the gradient of the cost function bytfespanding it with Eq.[(1). For arbitrary adjoint
variablesy(t), the cost function does not change if we augment it in thealg way:

J:/t:l (14 PO +yT (Fx,u) — %)) . ©)

We now consider an infinitesimal variation of the controlutgdu(t) causing an infinitesimal change of the states
ox(t) and of the final timedt;. Hence, the variation of the cost function Hd. (3) reads

53— / pr 3% +yT (FdX+fudU— %) } t+ {1+ p(x(t1))} Ot )



Since the final state must satisfy Elgl (8); and dx(t;) cannot be chosen independently. Up to first order, the
variation of the final state &t is given by

OX1 = X(tl + 5t1) + 5X(t1 + 5t1) — X(tl) ~ X(tl) + X(t1)5t1 + 5X(t1) —X(t1) = )'((tl)étl + Ox(t1).

Using this relation, the variation of Eq.(2) yields
-

O (x1)%1 = ] (1) ()10t + X(t)) =0 = Sty — —%&(tl) (5)

using the abbreviationg; and x; instead ofx(t;) and x(t). After integration by parts of the term' 5x and
inserting Eq.[(b), Eq[{4) becomes

" - 14 p(xa)
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6J—/to {yfudu+ (pf +yThe+y7) ox} i {yl + 0 () Gro St ().

If we now choosey(t) such that

1+ p(x1)
— — T — — P ——
y f y pX) y(tl) CDX (Xl) q)I (Xl)).(l (6)
the first variation of the cost function reduces to
5J = nyuaudt Z / g (t)du;(t (7)

whereg;(t) := yTf,, is used withu; being thei-th component ofi. After solving the adjoint differential equation
Eq. (6) backwards in time, an updatewomay be computed.
If ui(t) is a continuous control input, the largest (local) decredskis obtained by settingu; (t) = —kgi(t), if K
is a sufficiently small and positive number.
In case ofu;(t) being a bang-bang control inpuly;(t) results from a variation of the switching times and the
variation yielding the steepest descentlofan also be derived from Ed.] (7). First, we introduce the il
points T1... Ty to be identified. Moreover, we assume that eittier= O or u; = U; > 0. Shifting the switching
points aboutd i results in a variatiordu;(t) which is different from zero only in the intervéty, 7 + d1¢] and
given by
+u if te [, k+ o1y
ou(t) :{ 0 else

The negative sign has to be taken if the control switches fzern tou; at 1 and the positive sign for a switch
from u; to zero. For infinitesimal small shiftdt; ... dty we obtain from Eq.[{7)

m 1 m N N m
3= i; /to t giou;dt ~ i;k;{igi (tk)Ui } Oty = k; {izl(igi (tic) Uy )} Otk
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