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In the field of race car engineering the performance of a mechanical system is typically measured by the
duration of a driving maneuver, which is closely related to time optimal control. An approach often used for
solving optimal control problems is based on an adjoint gradient computation of the cost function which has to be
minimized. Using the gradient information, a (local) minimum can be found by applying appropriate optimization
techniques, such as line search algorithms. This approach has the advantage that it is more robust than solving the
underlying two point boundary value problem and, hence, applicable also to complex multibody systems described
by differential algebraic equations. In this contributionthe approach for fixed final time presented in [1] is extended
by terms needed to solve problems with variable final time. Toillustrate the problem description and the proposed
solution strategy for this case, we consider the dynamical system of a simplified vehicle model having the form

ẋ = f(x,u), x(t0) = x0, (1)

wherex(t) denotes the vector of state variables andu(t) the vector of control inputs. The extension to differential
algebraic systems is straightforward and shown in [1].

The final timet1 of a simulation run is reached, when the states satisfy a scalar equation of the form

Φ(x1) = 0, where x1 = x(t1). (2)

Recalling the racing car example, this condition may describe the crossing of the race track’s finish line. Note,
that this is only one form of a time optimal control problem. In other problems, the final state may be either fully
prescribed (such as in robotics) or even completely free .

Now, the goal is to find control inputsu(t) restricted by 0≤ ui(t)≤ ūi which minimize the cost function

J =

∫ t1

t0
(1+ p(x)) dt

wherep(x) is a penalty function in order to introduce some state constraints. Withoutp(x), the cost function is
simply the length of the time intervalt1− t0.

From Pontryagin’s minimum principle [2] follows, that – in the non-singular case – the optimal control for
bounded inputs, which appear linear in the Hamiltonian, is abang-bang control, where only the switching points
are unknown. In the vehicle dynamics example, this may be thecase for the accelerator and the brake input.
However, also some control inputs can appear, which are not of the bang-bang type (like the steering in the vehicle
example).

In order to apply a solution strategy for our time optimal control problem similar to the method proposed in
[1], we try to compute the gradient of the cost function by first expanding it with Eq. (1). For arbitrary adjoint
variablesy(t), the cost function does not change if we augment it in the following way:

J =

∫ t1

t0

(

1+ p(x)+yT (f(x,u)− ẋ)
)

dt. (3)

We now consider an infinitesimal variation of the control inputsδu(t) causing an infinitesimal change of the states
δx(t) and of the final timeδ t1. Hence, the variation of the cost function Eq. (3) reads

δJ =

∫ t1

t0

{

pTx δx+yT (fxδx+ fuδu−δ ẋ)
}

dt +{1+ p(x(t1))}δ t1. (4)



Since the final state must satisfy Eq. (2),δ t1 andδx(t1) cannot be chosen independently. Up to first order, the
variation of the final state att1 is given by

δx1 = x(t1+δ t1)+δx(t1+δ t1)−x(t1)≈ x(t1)+ ẋ(t1)δ t1+δx(t1)−x(t1) = ẋ(t1)δ t1+δx(t1).

Using this relation, the variation of Eq. (2) yields

ΦT

x (x1)δx1 = ΦT

x (x1)(ẋ1δ t1+δx(t1)) = 0 ⇒ δ t1 =−
ΦT

x (x1)

ΦT
x (x1)ẋ1

δx(t1) (5)

using the abbreviationsx1 and ẋ1 instead ofx(t1) and ẋ(t1). After integration by parts of the termyTδ ẋ and
inserting Eq. (5), Eq. (4) becomes

δJ =

∫ t1

t0

{

yTfuδu+
(

pTx +yTfx + ẏT
)

δx
}

dt −

{

yT1 +ΦT

x (x1)
1+ p(x1)

ΦT
x (x1)ẋ1

}

δx(t1).

If we now choosey(t) such that

ẏ =−fTx y− px, y(t1) =−Φx(x1)
1+ p(x1)

ΦT
x (x1)ẋ1

(6)

the first variation of the cost function reduces to

δJ =
∫ t1

t0
yTfuδudt =

m

∑
i=1

∫ t1

t0
gi(t)δui(t)dt, (7)

wheregi(t) := yTfui is used withui being thei-th component ofu. After solving the adjoint differential equation
Eq. (6) backwards in time, an update ofu may be computed.
If ui(t) is a continuous control input, the largest (local) decreaseof J is obtained by settingδui(t) =−κgi(t), if κ
is a sufficiently small and positive number.
In case ofui(t) being a bang-bang control input,δui(t) results from a variation of the switching times and the
variation yielding the steepest descent ofJ can also be derived from Eq. (7). First, we introduce the switching
points τ1 . . .τN to be identified. Moreover, we assume that eitherui = 0 or ui = ūi > 0. Shifting the switching
points aboutδτk results in a variationδui(t) which is different from zero only in the interval[τk,τk + δτk] and
given by

δui(t) =

{

±ūi if t ∈ [τk,τk +δτk]
0 else

The negative sign has to be taken if the control switches fromzero to ¯ui at τk and the positive sign for a switch
from ūi to zero. For infinitesimal small shiftsδ t1 . . .δ tN we obtain from Eq. (7)

δJ =
m

∑
i=1

∫ t1

t0
giδui dt ≈

m

∑
i=1

N

∑
k=1

{±gi(tk)ūi}δ tk =
N

∑
k=1

{

m

∑
i=1

(±gi(tk)ūi)

}

δ tk.

References

[1] K. Nachbagauer, S. Oberpeilsteiner, K. Sherif, and W. Steiner, “The Use of the Adjoint Method for Solving Typical
Optimization Problems in Multibody Dynamics,”Journal of Computational and Nonlinear Dynamics, vol. 10, no. 6,
p. 061011, 2015.

[2] D. E. Kirk, Optimal Control Theory: An Introduction. Dover Books on Electrical Engineering Series, Dover Publications,
2004.


