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The actual author has proposed to treat rigid bodies as continua whatever the nature of parameters, e.g. 
quaternions q a-priori incompatible with rigidity. But it is necessary to eliminate the stress tensor, so 
introduced in the virtual work principle. Here we propose to show the applicability of our method to an 
example involving friction expressed by inequality relations.  

1. Foundations. If motions of rigid bodies are described by parameters (like quaternions here chosen)
incompatible with rigidity, rigidity constraints must be explicit [1]. Here we propose to extend Lagrange 
method when rigidity law is impressed by explicit relations, recalling that usual Lagrange equations [2] 
(eventually with multipliers) are founded under the independence of parameters. 

Choice of Displacements and Virtual Velocity Fields. Being concerned by one rigid body B , we introduce 

available motions (H)  

x=R(q(t))X   ,   ii qxRRx && )'( 1−=    ,   v=( R’i R
-1x)wi      (H)

(sum on repeated indices) where R is some invertible 3× 3-matrix, function of n independent
parameters qi ,  R’i  is the partial derivative of R(q1,…,qn) and x the actual position of the particle X. The wi’s 
are arbitrary virtual velocities. R is not necessarily a rotation: e.g. since quaternions are used, then the 
rigidity constraint qTq=1 is not fulfilled. 

Virtual Work Principle (VWP). Since rigidity is not satisfied, it results the existence of strains. So the VWP 

available in Continuum Mechanics is required [3] – 

∫B dxva.ρ + ∫Γ davf. - ∫B dxvgrad:σ =0

whatever v (σ : Cauchy stress tensor, f: surface forces on Γ  (no volume forces for simplicity)). The first

term is the virtual work (denoted Liwi) of acceleration a, where Li is  obtained by Lagrange usual formula as 

a function of kinetic energy. We have  

grad v= (R’i R
-1)wi=Siwi+Aiwi   ,   ii wSgradv ):(: σσ =

where Si and Ai are resp. the symmetric and anti-symmetric parts of the matrix R’i R
-1

. The last equality

does not contain the matrix Ai since σ  is symmetric and Ai is anti-symmetric.  
  Elimination of stress tensor. Now in order to eliminate the Cauchy stress tensor, we require the relations 

Siwi=0 (sum on i). In addition, it is seen that surface forces f occur by global quantities only (i.e. R(f) and 

M(f)). Note that this elimination is a-priori realised if R is a rotation since RR
T
=Id implies that Si=0 for

i=1,…,n. So the following compatibility conditions result: whatever the wi’s such that Siwi=0, we have 

[-Li+M(f) ai]wi=0   (sum on i) 

(ai: dual vector of Ai) under the only above hypothesis (H). 

Material constitutive law. Finally we write the rigidity constraint (the material constitutive law) q
T
q=1 if 

quaternions. It is noteworthy that no undue hypothesis on the virtual work of internal forces were made 

in our paper. 

2. Example: contact with friction.  We consider an homogeneous rigid wheel (centre O, radius r and
mass m) rolling in a vertical plane O0x0y0  on an inclined line (or surface) O0X0 under the gravitational 
acceleration g downwards, the gravitational force being (f=-mgy0) applied on the centre O of the wheel. We 



use the referential Ref=O0X0Y0Z0 with the angle between O0x0 and O0X0 noted a . Two-dimensional Euler 
parameters (p,q) are introduced to specify the rotation of the wheel, so writing for the matrix R 

R11=R22=1-2q2  ,  R12=-R21=-2pq  ,  R-1=RT/ ∆    ,   ∆ =1+4q2(p2+q2-1 

Now we introduce the virtual coefficients (wx,wy,wp,wq) associate to the parameters (x,y,p,q) and the 
condition wiSi=0, i.e.  pwp+qwq=0 . Under the above condition, the VWP is writing 

 

- dxva
B

.ρ∫ -mgy0 .v(O)+Tv1(A)+Nv2(A)=0 

 

where (T,N,0) are the components of the two-dimensional contact force on the wheel applied at the 
contact point A. Now we must use the contact law of friction, by example in the hypothesis of a bilateral 
contact (y=r)  at the point A=(x,y-r,0) of the wheel, implying the geometric constraint y=r  , together with the 
Coulomb law of friction equivalent to the inequality [4] 
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First the parameters are specified such that wx=wp=wq=0 , satisfying (22) (i.e. wiSi=0). It results 
v(x)=(0,wy,0) so that by taking account of the bilateral contact y=r  

(mgcosa-N)=0 and K& +mgsina x& + )(1 AuNk =0 

dxva
B

.ρ∫ +mgy0 v(O)-Nv2(A)+ )(1 AvNk ≥ 0    where  N=mg cosa 

 

that is available whatever the parameters ),,( qpx www . After some straightforward calculus, the 
acceleration term  is obtained under the form 

∫B dxva.ρ = 2
122211 22 qbqpaqapawxm x &&&&&&&&& ++++  
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Taking account of this expression, the differential variational inequality follows  

 
0)(2)(cos)sin( 2 ≥++++++ qpqqppxx BwAwmrwwrwakmgwamgxm αα&&  

 

(where qp αα ,  and A,B are given functions) under the compatibility condition pwp+qwq=0. That is the 
basic relation to solve the problem completed naturally by initial conditions on velocities (and positions). 
The numerical treatment of this inequality is not the aim of this present mechanical work [5]. 

 

3. Conclusion and References.    The present paper has presented a natural link existing between 
Analytical Dynamics and Continuum Mechanics. The keys of the actual scheme were the use of the Virtual 
Work Principal; then the elimination of Cauchy stresses introduces compatibility relations between virtual 
coefficients. The example has highlighted the necessity to separate these compatibility conditions and the 
relations expressing mechanical laws 
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