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A beam is defined as a structure having one of its dimensiorehauger than the other two. The generally
curved axis of the beam is defined along that longer dimeranohthe cross-section slides along this axis. The
cross-section’s geometric and physical properties atg@sd to vary smoothly along the beam’s span. Numerous
components found in flexible multibody systems are beamdikuctures: linkages, transmission shafts, robotic
arms, etc.

The analysis of complex cross-sections featuring compaséterials and the determination of the associated
sectional properties was first presented by Giavettal. [1]. Their approach, based on linear elasticity theory,
leads to a two-dimensional analysis of the beam’s croseseasing finite elements and yields the sectional
stiffness characteristics in the form of a 6 stiffness matrix relating the six sectional deformatjdhsee strains
and three curvatures, to the sectional loads, three formgshmee moments. Furthermore, the three-dimensional
strain field at all points of the cross-section can be re@m/ence the sectional strains are known.

The development of inelastic constitutive material lawstfonlinear beams has received far less attention than
that of elastic laws. In numerous publications, dampinghtehave been added in an ad-hoc manndimiar
Euler—Bernoulli or Timoshenko beam models (usually asslitodave a straight reference geometry); in contrast,
viscous damping models fgeometrically nonlineabeams or rods are discussed only rarely. The few articlés tha
have appeared in the computational mechanics literaterdiscussed briefly.

Simoet al. [2] formulated sectional-level viscoplastic constitatilaws for geometrically exact rods without
resorting to local, three-dimensional constitutive laws.contrast, Mataet al. [3] used the kinematic model of
Simo [4] to develop inelastic constitutive behaviour laws ¢omposite beam structures under dynamic loading.
They evaluated the inelastic stresses by numerical integraf three-dimensional Piola-Kirchhoff stresses over
two-dimensional discretizations of the local cross sedtito obtain the stress resultants and couples of the rod
model. The same authors also proposed a Kelvin-Voigt typdeibased on aingle viscosity parameter only
and their formulation uses a vectorial strain measure difdeint-wise within the cross-section, which represents
parts of Biot strain tensor; see Limt al. [5] for additional details.

In a recent article, Abdel-Nasser and Shabana [6] insertadea-dimensional Kelvin-Voigt model into a ge-
ometrically nonlinear beam model using the absolute nodatdinates formulation to obtain a viscous damping
beam model. Their formulation, however, suffers from Rmsdecking and is not valid for incompressible materi-
als.

The Kelvin-Voigt model has also been used as a means of untnogl numerical dissipation in dynamical
equations. The dynamic balance equations of a Cosseragaddd an undamped, nonlinear coupled hyperbolic
system of PDEs for which the formation of shock waves is fbssi To overcome the numerical difficulties
associated with the solution of this system, Antman [7] psmal the addition of Kelvin-Voigt type dissipative
terms acting aartificial viscosityto achieve aegularizationeffect on the continuous model.

Linn et al. [5] provided a more rigorous definition of the damping partereebased on a three-dimensional
continuum model, but their approach is limited to the casa bébmogeneous, isotropic, and linearly elastic ma-
terials. Furthermore, their derivation is based on spekifiematic assumptions, which require cross-sections to
remain plane. Lateral contractions induced by axial stréimough Poisson’s effects are taken into account and
the model yields shear and extensional viscosities camdistith Trouton’s ratio in the case of incompressible
materials. Cross-sectional warping deformation, howewas ignored. Linn[8] also presented a straightforward
generalization of his approach to the generalized Maxwstloelastic model, but the assumption inherent to the
derivation do not allow applications to realistic struesiinvolving complex geometries and material properties.



The goal of this paper is not to develop new viscoelastic titoise laws for beams. Rather, a systematic
procedure is proposed that allows existing viscoelastidetsoto be used within the context of beam theory.

This paper proposes a rational approach to the developnieohstitutive laws for viscoelastic beams. The
procedure combines a three-dimensional material visstielaodel with a three-dimensional beam theoiy [9, 10],
which provides an exact solution of three-dimensionalteidg for static problems, but was used here as the basis
for the analysis of viscoelastitg., dynamic problems. The applicability of the proposed methagy is limited
to the dynamic analysis of lightly damped beams undergailnigattons associated with wave lengths that are much
longer than the characteristic dimensions of the crosseseclhese assumptions do not put additional restrictions
on the applicability of the proposed approach because bbkaomyt for dynamics is inherently a low frequency
approximation, even in the absence of viscoelastic méderia

In this effort, the beam’s viscoelastic behavior was regmé=d by the generalized Maxwell model, but other
viscoelastic models could be used as well. Indeed, the presper describes a general approach to the problem:
starting from a three-dimensional viscoelastic materiatiei, the corresponding viscoelastic beam model is con-
structed. It is interesting to note that the convolutioregnal that characterizes the generalized Maxwell model is
found at the level of the one-dimensional material, thrimeetisional material, and beam cross-sectional models.

The proposed approach can be generalized to viscoelastariata featuring nonlinear material behavior;
nonlinear behavior is common for elastomeric materialsjrfstance, even at low strain levels. In such case, the
sectional analysis must be fully integrated with the soluidf the beam equations, repeating the two-dimensional
analysis at each time step during the simulation.
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